
95-865 Unstructured Data Analytics

Slides by George H. Chen

Lecture 13: Wrap up CNNs;
time series analysis with

recurrent neural nets (RNNs)

Administrivia

• There’s no questionnaire for HW3 — instead there are official
Faculty Course Evaluations (FCEs)!

• HW3 has been released (due Mon Apr 28, 11:59pm)

• Please fill this out to provide feedback on the course!

• Your predecessors’ feedback greatly improved the course
(and your feedback could greatly improve the course for your
successors, i.e., future 95-865 students)

(Flashback) Convolution Layer

Images from: http://aishack.in/tutorials/image-convolution-examples/

convolve with
each filter

1/9 1/9 1/9

1/9 1/9 1/9

1/9 1/9 1/9

-1 -1 -1

2 2 2

-1 -1 -1

0 -1 0

-1 4 -1

0 -1 0

filters & biases (1 bias number per filter)
are unknown and are learned!

add bias

add bias

add bias

apply
activation

apply
activation

apply
activation

Conv2d
layer

Activation layer
(such as ReLU)

(Flashback) Convolution Layer

Conv2d
(k kernels

each size dx3x3),
ReLU activation

Input

Stack output
images into a
single “output
feature map”

shape:
d (# channels)

height,
width

shape:
k,

height-2,
width-2

∗}

d

}

d

image width
image height

Each filter:

Pooling

• To produce this smaller image, need to aggregate or “pool”
together information

• Produces smaller image summarizing original larger image

Max Pooling

0 0 0 0 0 0 0

0 0 1 1 1 0 0

0 1 1 1 1 1 0

0 1 1 1 0 0 0

0 1 1 1 1 1 0

0 0 1 1 1 0 0

0 0 0 0 0 0 0

Input image

Called “2-by-2” max pooling since this green box is 2 rows by 2 columns

Output image

Take maximum value

3-by-4 max pooling would mean that the green box is 3 rows by 4 columns, etc

Max Pooling

0 0 0 0 0 0 0

0 0 1 1 1 0 0

0 1 1 1 1 1 0

0 1 1 1 0 0 0

0 1 1 1 1 1 0

0 0 1 1 1 0 0

0 0 0 0 0 0 0

Input image

Called “2-by-2” max pooling since this green box is 2 rows by 2 columns

0

Output image

Take maximum value

3-by-4 max pooling would mean that the green box is 3 rows by 4 columns, etc

Max Pooling

0 0 0 0 0 0 0

0 0 1 1 1 0 0

0 1 1 1 1 1 0

0 1 1 1 0 0 0

0 1 1 1 1 1 0

0 0 1 1 1 0 0

0 0 0 0 0 0 0

Input image

Called “2-by-2” max pooling since this green box is 2 rows by 2 columns

0 1

Output image

Take maximum value

3-by-4 max pooling would mean that the green box is 3 rows by 4 columns, etc

Max Pooling

0 0 0 0 0 0 0

0 0 1 1 1 0 0

0 1 1 1 1 1 0

0 1 1 1 0 0 0

0 1 1 1 1 1 0

0 0 1 1 1 0 0

0 0 0 0 0 0 0

Input image

Called “2-by-2” max pooling since this green box is 2 rows by 2 columns

0 1 1

Output image

Take maximum value

3-by-4 max pooling would mean that the green box is 3 rows by 4 columns, etc

Max Pooling

0 0 0 0 0 0 0

0 0 1 1 1 0 0

0 1 1 1 1 1 0

0 1 1 1 0 0 0

0 1 1 1 1 1 0

0 0 1 1 1 0 0

0 0 0 0 0 0 0

Input image

Called “2-by-2” max pooling since this green box is 2 rows by 2 columns

0 1 1

1

Output image

Take maximum value

3-by-4 max pooling would mean that the green box is 3 rows by 4 columns, etc

Max Pooling

0 0 0 0 0 0 0

0 0 1 1 1 0 0

0 1 1 1 1 1 0

0 1 1 1 0 0 0

0 1 1 1 1 1 0

0 0 1 1 1 0 0

0 0 0 0 0 0 0

Input image

Called “2-by-2” max pooling since this green box is 2 rows by 2 columns

0 1 1

1 1 1

1 1 1

Output image

3-by-4 max pooling would mean that the green box is 3 rows by 4 columns, etc

Common Building Block of CNNs

Images from: http://aishack.in/tutorials/image-convolution-examples/

Conv2d
(k kernels),

ReLU activation

Input

Max Pool 2d
(applied to each
image in stack)

stack of images

output stack of
smaller images

Input

Handwritten Digit Recognition

Flatten Linear
(512 nodes),

ReLU

Training label: 6

Loss error

Linear
(10 nodes),

Softmax

Categorical
cross entropy

Input

Handwritten Digit Recognition

Conv2d,
ReLU

Training label: 6

Loss error

Linear
(10 nodes),

Softmax

Categorical
cross entropy

Max
Pool
2d

Flatten

Handwritten Digit Recognition

Conv2d,
ReLU

Training label: 6

Max
Pool
2d

Conv2d,
ReLU

Input
Linear

(10 nodes),
Softmax

FlattenMax
Pool
2d

errorLoss

Categorical
cross entropy

extract low-level visual
features & aggregate

extract higher-level visual
features & aggregate

non-vision-specific classifier

CNNs

Demo

Recap

• A convolution filter processes an input image to produce an output
image by taking weighted sums
(examples: blurring an image, finding edges in an image)

• Repeat convolution→nonlinear activation→pooling to learn
increasingly higher-level features

• Max pooling produces a smaller summary output

• Max pooling can sometimes produce unexpected behavior
when an input image shifts by a small amount:
see Richard Zhang’s fix for max pooling (supplemental materials)

CNNs Encode Semantic
Structure for Images

Remember how back in the text clustering & topic modeling demos,
100-dimensional PCA space captured semantic structure of words

(such as “study” and “learn” being similar)?

CNNs capture semantic structure for images

CNNs Encode Semantic Structure for Images

Linear
(10 nodes),

Softmax

Conv2d,
ReLU

Max
Pool
2d

Conv2d,
ReLU

FlattenMax
Pool
2d

CNNs Encode Semantic Structure for Images

final output for different input
6’s is similar

Linear
(10 nodes),

Softmax

Conv2d,
ReLU

Max
Pool
2d

Conv2d,
ReLU

FlattenMax
Pool
2d

Linear
(10 nodes),

Softmax

Conv2d,
ReLU

Max
Pool
2d

Conv2d,
ReLU

FlattenMax
Pool
2d

Linear
(10 nodes),

Softmax

Conv2d,
ReLU

Max
Pool
2d

Conv2d,
ReLU

FlattenMax
Pool
2d

Linear
(10 nodes),

Conv2d,
ReLU

Max
Pool

Conv2d,
ReLU

FlattenMax
Pool

actually, intermediate
representations close
to the last layer are

also similar!

(intuition: recall the
crumpled paper analogy!)

Conv2d,
ReLU

Max
Pool

Conv2d,
ReLU

FlattenMax
Pool

Conv2d,
ReLU

Max
Pool
2d

Conv2d,
ReLU

FlattenMax
Pool
2d

One more PyTorch thing…

Constructing PyTorch Models with nn.Module

Another way to write this:

deeper_model = nn.Sequential(nn.Flatten(),
 nn.Linear(in_features=784, out_features=512),
 nn.ReLU(),
 nn.Linear(in_features=512, out_features=10))

class DeeperModel(nn.Module):
 def __init__(self, num_in_features, num_intermediate_features, num_out_features):
 super().__init__()
 self.flatten = nn.Flatten()
 self.linear1 = nn.Linear(num_in_features, num_intermediate_features)
 self.relu = nn.ReLU()
 self.linear2 = nn.Linear(num_intermediate_features, num_out_features)

 def forward(self, inputs):
 flatten_output = self.flatten(inputs)
 linear1_output = self.linear1(flatten_output)
 relu_output = self.relu(linear1_output)
 linear2_output = self.linear2(relu_output)
 return linear2_output

deeper_model = DeeperModel(784, 512, 10)

(we’ll need this level of detail in the next demo)

Accounting for time series structure
using recurrent neural networks

(RNNs)

Time Series Data

Each data point is a video

… …

Time 0

Time 1

Time 2

Previous coverage:
MLPs & CNNs can handle

each frame separately

Recurrent Neural Nets
Previous coverage:

MLPs & CNNs can handle
each frame separately

… …

RNNs:
include output at

previous time step as
input to current time step

Time 0

Time 1

Time 2
There are different kinds

of RNNs, such as:
RNN (vanilla),
LSTM, GRU

Recurrent Neural Nets

RNN layerTime series

Previous coverage:
MLPs & CNNs can handle

each frame separately

RNNs:
include output at

previous time step as
input to current time step

There are different kinds
of RNNs, such as:
RNN (vanilla),
LSTM, GRU

linear = np.dot(input, W.T) + b \

 + np.dot(current_state, U.T)

Vanilla ReLU RNN

current_state = np.zeros(num_nodes)

for input in input_sequence:

 \

 + np.dot(current_state, U.T)

Parameters: weight matrices W & U, and bias vector b

How memory changes from one time step to the next is determined by an
operation that looks like a linear layer followed by a nonlinear activation

memory that evolves over time; we want to learn how it changes

current_state = output

b is a 1D table:
num_nodes entries

linear = np.dot(input, W.T) + b

Python list that
can have any

nonzero length!

W is a 2D table: # rows: num_nodes,
cols: num_features

linear is a 1D table:
num_nodes entries

output = np.maximum(0, linear) # ReLU U is a 2D table:
num_nodes by
num_nodes

input is a 1D table:
num_features entries

Vanilla ReLU RNN

for input in input_sequence:

current_state = output

outputs = []

outputs.append(output)

current_state = np.zeros(num_nodes)

linear = np.dot(input, W.T) + b \

 + np.dot(current_state, U.T)

For simplicity, in today’s lecture, we only use the very last time step’s output

In general: there is an output at every time step

output = np.maximum(0, linear) # ReLU

Recurrent Neural Nets

RNN layer

⇒ combine with other neural net layers

Time series models how output changes
over time but does not know

image or text structure!!!

Recurrent Neural Nets

RNN layer

C
N

N

Time series models how output changes
over time but does not know

image or text structure!!!

apply CNN to each video
frame to extract

semantically meaningful
representation

⇒ combine with other neural net layers

actually, intermediate
representations close
to the last layer are

also similar!

(intuition: recall the
crumpled paper analogy!)

Conv2d,
ReLU

Max
Pool

Conv2d,
ReLU

FlattenMax
Pool

Conv2d,
ReLU

Max
Pool
2d

Conv2d,
ReLU

FlattenMax
Pool
2d

Recurrent Neural Nets

RNN layer

C
N

N

Time series models how output changes
over time but does not know

image or text structure!!!

apply CNN to each video
frame to extract

semantically meaningful
representation

⇒ combine with other neural net layers

Recurrent Neural Nets

C
N

N

Time series RNN layer

C
la

ss
ifi

er

models how output changes
over time but does not know

image or text structure!!!

⇒ combine with other neural net layers

apply CNN to each video
frame to extract

semantically meaningful
representation

Recurrent Neural Nets

Time series Conv2d,
ReLU

Max
Pool
2d

Conv2d,
ReLU

FlattenMax
Pool
2d

RNN layer

C
la

ss
ifi

er

apply CNN to each video
frame to extract

semantically meaningful
representation

Recurrent Neural Nets

C
N

N

Time series RNN layer

C
la

ss
ifi

er

models how output changes
over time but does not know

image or text structure!!!

⇒ combine with other neural net layers

apply CNN to each video
frame to extract

semantically meaningful
representation

Recurrent Neural Nets

RNN layer

Text
Positive/negative
sentiment

Example: Given text (e.g., movie review, Tweet), figure out whether it has
positive or negative sentiment (binary classification)

Common first step for text:
turn words into vector

representations that are
semantically meaningful

C
la

ss
ifi

er

Linear layer (2 nodes),
Softmax activation

label 0: negative sentiment
label 1: positive sentiment

(Flashback) Do Data Actually Live on
Manifolds?

Image source: http://www.adityathakker.com/wp-content/uploads/2017/06/word-
embeddings-994x675.png

Recurrent Neural Nets

RNN layer

Text
Positive/negative
sentiment

Example: Given text (e.g., movie review, Tweet), figure out whether it has
positive or negative sentiment (binary classification)

Common first step for text:
turn words into vector

representations that are
semantically meaningful

In PyTorch, use the
Embedding layer

Em
be

dd
in

g

C
la

ss
ifi

er

Linear layer (2 nodes),
Softmax activation

label 0: negative sentiment
label 1: positive sentiment

Word index Word 2D Embedding

0 this [-0.57, 0.44]

1 movie [0.38, 0.15]

2 rocks [-0.85, 0.70]

3 sucks [-0.26, 0.66]

Sentiment Analysis with IMDb Reviews

Training reviews

Step 1: Tokenize & build vocabulary

Step 2: Encode each review as a sequence of
word indices into the vocab

Word index Word

0 this

1 movie

2 rocks

3 sucks

“this movie rocks”

“this movie sucks”

0 1 2

0 1 3

“this sucks” 0 3

Ordering of words
matters

Different reviews can
have different lengths

Step 3: Use word embeddings to represent each word

Word index Word 2D Embedding

0 this [-0.57, 0.44]

1 movie [0.38, 0.15]

2 rocks [-0.85, 0.70]

3 sucks [-0.26, 0.66]

Sentiment Analysis with IMDb Reviews

Training reviews

Step 1: Tokenize & build vocabulary

Step 2: Encode each review as a sequence of
word indices into the vocab

Word index Word

0 this

1 movie

2 rocks

3 sucks

Step 3: Use word embeddings to represent each word

“this movie sucks”

[-0.57, 0.44]
[0.38, 0.15]
[-0.26, 0.66]

0 1 3

